Complexity Theory for Lie-Group Solvers

نویسندگان

  • Elena Celledoni
  • Arieh Iserles
  • Syvert P. Nørsett
  • Bojan Orel
چکیده

Commencing with a brief survey of Lie-group theory and diierential equations evolving on Lie groups, we describe a number of numerical algorithms designed to respect Lie-group structure: Runge{Kutta{Munthe-Kaas schemes, Fer and Magnus expansions. This is followed by complexity analysis of Fer and Magnus expansions, whose conclusion is that for order four, six and eight an appropriately discretized Magnus method is always cheaper than a Fer method of the same order. Each Lie-group method of the kind surveyed in this paper requires the computation of a matrix exponential. Classical methods, e.g. Krylov-subspace and rational approximants, may fail to map elements in a Lie algebra to a Lie group. Therefore we survey a number of approximants based on the splitting approach and demonstrate that their cost is compatible (and often superior) to classical methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of Differential Equations by Lie Algebra of Symmetries

The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...

متن کامل

Monomial Irreducible sln-Modules

In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.

متن کامل

Arithmetic Deformation Theory of Lie Algebras

This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...

متن کامل

Smale's point estimate theory for Newton's method on Lie groups

The γ-condition Smale's point estimate theory a b s t r a c t We introduce the notion of the (one-parameter subgroup) γ-condition for a map f from a Lie group to its Lie algebra and establish α-theory and γ-theory for Newton's method for a map f satisfying this condition. Applications to analytic maps are provided, and Smale's α-theory and γ-theory are extended and developed. Examples arising f...

متن کامل

Some properties of nilpotent Lie algebras

In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2002